About 507,000 results
Open links in new tab
  1. regression - Converting standardized betas back to original variables ...

    I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.

  2. regression - What's the difference between multiple R and R squared ...

    Nov 3, 2017 · In linear regression, we often get multiple R and R squared. What are the differences between them?

  3. What's the difference between correlation and simple linear regression ...

    Aug 1, 2013 · Note that one perspective on the relationship between regression & correlation can be discerned from my answer here: What is the difference between doing linear regression on y with x …

  4. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems to mea...

  5. regression - Trying to understand the fitted vs residual plot? - Cross ...

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is reasonable. The …

  6. How should outliers be dealt with in linear regression analysis ...

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  7. regression - What is residual standard error? - Cross Validated

    A quick question: Is "residual standard error" the same as "residual standard deviation"? Gelman and Hill (p.41, 2007) seem to use them interchangeably.

  8. regression - When is R squared negative? - Cross Validated

    Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is equivalent to …

  9. regression - Linear vs Nonlinear Machine Learning Algorithms - Cross ...

    Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression Trees, Naive …

  10. When conducting multiple regression, when should you center your ...

    Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean and dividin...